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In Brief
Networks are an important way
to represent the connections
within a system, and it is useful
to identify tightly connected
clusters within a network (e.g.,
protein complexes). However,
biological networks often have
noise, and our results
demonstrate that clustering is
sensitive to noise at levels typical
of biological networks (e.g.,
10–50%). We developed an
R-based tool (clust.perturb) that
can predict the real-world
reproducibility of individual
clusters for any clustering
algorithm by randomly
perturbing the network.
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RESEARCH
On the Robustness of Graph-Based Clustering
to Random Network Alterations
R. Greg Stacey1,* , Michael A. Skinnider1 , and Leonard J. Foster1,2
Biological functions emerge from complex and dynamic
networks of protein–protein interactions. Because these
protein–protein interaction networks, or interactomes,
represent pairwise connections within a hierarchically
organized system, it is often useful to identify higher-order
associations embedded within them, such as multi-
member protein complexes. Graph-based clustering
techniques are widely used to accomplish this goal, and
dozens of field-specific and general clustering algorithms
exist. However, interactomes can be prone to errors,
especially when inferred from high-throughput biochem-
ical assays. Therefore, robustness to network-level noise
is an important criterion. Here, we tested the robustness
of a range of graph-based clustering algorithms in the
presence of noise, including algorithms common across
domains and those specific to protein networks. Strik-
ingly, we found that all of the clustering algorithms tested
here markedly amplified network-level noise. Randomly
rewiring only 1% of network edges yielded more than a
50% change in clustering results. Moreover, we found the
impact of network noise on individual clusters was not
uniform: some clusters were consistently robust to injec-
ted noise, whereas others were not. Therefore we devel-
oped the clust.perturb R package and Shiny web
application to measure the reproducibility of clusters by
randomly perturbing the network. We show that clust.-
perturb results are predictive of real-world cluster stabil-
ity: poorly reproducible clusters as identified by
clust.perturb are significantly less likely to be reclustered
across experiments. We conclude that graph-based
clustering amplifies noise in protein interaction net-
works, but quantifying the robustness of a cluster to
network noise can separate stable protein complexes
from spurious associations.

Networks are an important framework for representing the
connections within a system, such as the agglomeration of
proteins into complexes. Because these networks are
composed of a list of pairwise connections (edges) between
members (nodes) and do not explicitly detail higher-order
associations, it can be useful to infer higher-order arrange-
ments from the network. This task, called community detec-
tion or graph-based clustering, is ubiquitous across fields and
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is especially important in biology, where the function of a
biological macromolecule such as a protein is often mediated
by its interacting partners within the network.
However, noise in networks can complicate clustering. This

is especially true in biological networks constructed from high-
throughput experiments, such as protein–protein interaction
networks (“interactomes”) where more than half of the ex-
pected network edges may vary from experiment to experi-
ment, either because of errors in network reconstruction or
changes in experimental conditions (1). Complicating this
issue is the fact that it can be surprisingly ambiguous to
measure differences between sets of clusters, in part because
metrics for this purpose make different choices about how to
penalize false positives (incorrectly merging clusters) versus
false negatives (incorrectly separating clusters). This choice of
weighting can mean popular metrics display biases and other
nonintuitive behavior (2), and papers using these metrics can
include in-depth discussions of their behavior (3). This may
explain why there is some discrepancy in the literature
regarding the degree of noise sensitivity when clustering
biological networks, with some papers reporting substantial
noise sensitivity (4) and others not (5–7).
The aim of the present study was to quantify the relationship

between the level of network noise and cluster reproducibility.
Our analysis focuses primarily on protein–protein interaction
networks, but we reproduce our central findings in other types
of networks. We first identified an unbiased cluster set simi-
larity metric that behaved intuitively. With this metric in hand,
we then randomly altered a “gold standard” unweighted
network to varying degrees and measured the effects on the
derived clusters. To arrive at general findings, we additionally
analyzed two literature-curated interactomes (8, 9); three
large-scale human interactomes derived from affinity
purification–mass spectrometry (AP-MS) or yeast two-hybrid
(Y2H) techniques, including one weighted interactome
(10–12); a network of drug–drug side-effects (13); a repre-
sentative social network (14, 15); and 28 protein–protein
interaction networks derived from co-fractionation mass
spectrometry experiments generated by our group (16–19).
We quantified the robustness of clusters obtained from nine
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Testing the Robustness of Graph-Based Clustering
clustering algorithms that are widely used in a number of
different contexts. We found substantial sensitivity of clus-
tering results to the injection of small amounts of noise into the
networks. In particular, we found that all of the clustering al-
gorithms tested here “amplified” noise in the network, such
that a small perturbation of the underlying network produced a
marked perturbation of the recovered complexes. We then
reasoned that individual clusters that are robust to small
perturbations are more likely to represent biologically or so-
ciologically coherent communities. To this end, we developed
the tool clust.perturb, an R package (https://github.com/
fosterlab/clust-perturb) and the Shiny web application
(https://rstacey.shinyapps.io/clust-perturb-tool/), that mea-
sures the reproducibility of clusters, and nodes within clusters,
over multiple iterations of network perturbation. We show that
clust.perturb can accurately predict which clusters are likely to
be reproduced in real-world situations where networks vary
(experiment-to-experiment changes), motivating its use as an
additional computational step when constructing clusters
from networks.
EXPERIMENTAL PROCEDURES

Datasets

We analyzed the robustness of several clustering algorithms, using
both undirected graphs and raw proteomic data as inputs. First, we
perturbed networks by randomly removing and adding edges. To
provide a broad range of networks, we clustered five protein–protein
interaction networks, a network of drug–drug side-effects, and a so-
cial network (supplemental Fig. S1):

(1) Comprehensive resource of mammalian complexes (CORUM): A
literature-curated interactome (CORUM, https://mips.helmholtz-
muenchen.de/corum/, downloaded September 2018) (8).
Because CORUM is published as a list of protein complexes, not
pairwise interactions, we first reduced the 2824 CORUM com-
plexes among human proteins to their pairwise network. This
produced a network of 39,563 protein–protein interactions
(edges) between 3645 unique proteins (nodes). The original
protein complexes were used as a ground-truth cluster set.

(2) BioGRID: A literature-curated interactome (https://downloads.
thebiogrid.org/BioGRID file BIOGRID-ALL-3.5.186.tab3.txt,
downloaded June 2020) (9). The full interactome of more
nearly two million interactions was reduced to interactions be-
tween human proteins, producing a network with 571,848 in-
teractions between 18,631 proteins.

(3) BioPlex: An interactome compiled from AP-MS experiments in
HEK293T cells (https://bioplex.hms.harvard.edu file Bio-
Plex_293T_Network_10K_Dec_2019.tsv, downloaded June
2020) (10). This network consists of 118,162 interactions be-
tween 13,689 proteins.

(4) Collins2007: An interactome merging two other high-
confidence interactomes (12). Importantly, this network is
weighted, with edge weights being equal to the published
confidence score (minimum edge weight = 0.48, maximum
weight = 0.99). As in (12), we analyzed the top 9074 protein
pairs between 622 proteins.

(5) HuRI: An interactome of human proteins compiled from Y2H
experiments (11). This network consists of 52,547 interactions
between 7116 proteins.
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(6) DrugBank: A drug–drug interaction network, which is a subset
of the DrugBank database that lists drug pairs with known in-
teractions, i.e., drug pairs that have unwanted side-effects
when taken together (DrugBank, https://snap.stanford.edu/
biodata/datasets/10001/10001-ChCh-Miner.html, downloaded
May 2019) (13). This network consists of 48,514 drug–drug in-
teractions (edges) between 1514 unique drugs (nodes).

(7) email-Eu: A social network, consisting of anonymized emails
between members of a European research institution (email-Eu,
https://snap.stanford.edu/data/email-Eu-core.html, down-
loaded May 2019) (15, 20). Nodes in this network represent
members of the institution and are connected by an edge if
either person sent the other at least one email (16,063 edges
between 1005 nodes). The original network was directed and
contained self-interactions. For the purposes of this study, we
removed self-interactions and modified it to be undirected.
Each research institute member was a member of exactly one
of 42 departments, and these department affiliations were used
as a ground-truth cluster set.

All networks are undirected with no self-interactions. All networks
are unweighted (i.e., all edge weights = 1) except Collins2007 which
is weighted by the published interaction confidence score (12).
The CORUM and email-Eu networks had ground-truth cluster
assignments.

Second, to explore the effect of injecting noise directly into the
experimental data that provides the basis for network inference, we
also clustered networks inferred from four sets of co-fractionation
experiments collected by our laboratory (16–19). These datasets
were collected to reconstruct protein–protein interaction networks,
using co-fractionation over size exchange chromatography as evi-
dence of protein interaction. They were collected across different
species and experimental conditions and represent a broad range of
co-fractionation experiments: Kristensen et al. (18) studied the
response of HeLa cells to epidermal growth factor over three biolog-
ical replicates; Scott et al. (17) studied HeLa cell response to Salmo-
nella infection, four replicates; Scott et al. (16) studied apoptotic Jerkat
cells, three replicates; and Kerr et al. (19) studied HeLa cell response
to interferon stimulation, four replicates. Each dataset is composed of
thousands of co-fractionation profiles collected under two experi-
mental conditions and repeated in at least three replicates. In this
study, we treated each combination of replicate and experimental
condition separately, of which there were 28 in total. To generate an
interactome network from each replicate/condition, we used the
PrInCE analysis pipeline with default settings (21). As in previous work
(11, 22), our intent in so doing is not necessarily to argue that PrInCE
represents the single most accurate approach for protein–protein
interaction inference from co-fractionation data but rather that it is
sufficiently representative of the kinds of machine-learning ap-
proaches used within the field (e.g., (23–25)) that our conclusions will
generalize more broadly. Three replicate/condition combinations
produced interactomes with fewer than 50 pairwise interactions, likely
because of poor data quality, and these were not analyzed in this
study. Before adding noise, the remaining 25 datasets used for this
study produced interactomes with between 143 and 14,358 in-
teractions (6139 ± 3989, mean ± SD).

Experimental Methodology

To test the effects of network noise on clustering results, we added
network-level noise by randomly rewiring network edges and clus-
tered both noised and original networks using graph-based clustering
algorithms. That is, a certain number of edges were removed from the
network and replaced with the same number of edges not previously
contained in the network. Thus, the size of the network was pre-
served while the fraction of rewired edges was varied. The fraction of

https://github.com/fosterlab/clust-perturb
https://github.com/fosterlab/clust-perturb
https://rstacey.shinyapps.io/clust-perturb-tool/
https://mips.helmholtz-muenchen.de/corum/
https://mips.helmholtz-muenchen.de/corum/
https://downloads.thebiogrid.org/BioGRID
https://downloads.thebiogrid.org/BioGRID
https://bioplex.hms.harvard.edu
https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html
https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html
https://snap.stanford.edu/data/email-Eu-core.html


Testing the Robustness of Graph-Based Clustering
rewired edges was calculated as a false positive rate, equal to the
number of rewired edges divided by the total number of edges in the
network. To avoid confusion with a network's inherent false positive
rate, which comes from mistakes in the original edge list, we use the
term “network noise level” to refer to the false positive rate of in silico
changes made to the network. To track the effects of network noise
on clustering, we compared clustering results from noised networks
to the clustering results from the original network (Fig. 1A). We
repeated this noised-to-original comparison for each clustering
algorithm.

In addition to rewiring, we ran limited analyses with different levels of
added or removed edges to examine whether our conclusions are
specific to a particular type of noise (i.e., false positives or false nega-
tives). In these cases, a fraction of edges were removed, or edges not
originally in the network were added, or both in differing amounts.
Similar to rewiring, the number of added or removed edges was pro-
portional to the size of the network. Noise levels analyzed were fnoise =
0%, 1%, 2%, 5%, 10%, 15%, 25%, 50%, and 100%. Because this
produces 81 noise combinations, we also calculated the overall level of
injected network noise as Δedges = fadd + fremove, i.e., the sum of the
added and removed fractions.

The effects of experimental noise on clustering results were
measured in much the same way, except that noise was added to co-
fractionation profiles before generating a network via PrInCE, rather
than to the network directly. Noise was added to co-fractionation
profiles by adding a normally distributed random number to the log-
transformed value of each data point, with standard deviation equal
to the noise level. That is, for each data point,

y′ = y + f X,

where y′ is the noised log-transformed co-fractionation data, y is the
original log-transformed co-fractionation data, f is the co-fractionation
noise level, and X is a normally distributed random number with mean
zero. Log-transformation was used because co-fractionation values
tend to follow an approximately log-normal distribution. Although we
employed a different method for adding noise to these co-
fractionation datasets compared with the other 7 networks (adding
noise to the co-fractionation profiles rather than the interactome
generated from the profiles), importantly, the end result is the same:
added or lost network edges before clustering.
Choosing a Cluster-Wise and Set-Wise Similarity Metric

Many different metrics have been proposed to measure the simi-
larity of two sets of clusters (2). These metrics implicitly trade off
rewarding intracluster edges (true positives) and penalizing intercluster
edges (false positives). Previous work has shown that this trade-off
leads different cluster similarity metrics to measure distinct aspects
of cluster similarity and to display nonintuitive behaviors (2). Therefore,
we examined which set-wise similarity metrics, if any, adhered to
intuitive notions of “cluster set similarity”, such as measuring com-
plete similarity when sets are identical and less than complete simi-
larity when they are not. Set-wise metrics assign a similarity value to
entire sets of clustering results, i.e., a single value for all clusters. This
in contrast to cluster-wise metrics, which assign a similarity score to
each cluster. Set-wise metrics are often computed as an average of
cluster-wise metrics.

We analyzed whether set-wise metrics matched intuition in four
scenarios:

(1) A similarity score of 1 is assigned to identical cluster sets and
decreases as the number of nonidentical cluster assignments
increases.
(2) The score is not biased by the number of clusters in either set.
(3) The score is not negatively affected by nodes participating in

multiple clusters (“moonlighting”).
(4) The score penalizes situations where sets are nonidentical

because of missing nodes in one set.
These were tested using simulated clustering sets of 1000 nodes

assigned to 100 equal-sized clusters, before manipulation in each
condition. Our analysis parallels that of Gates et al. (2). In this simu-
lation, we tested six commonly used set-wise cluster similarity
metrics:

• Normalized mutual information (26)
• Adjusted rand index (27)
• GA (3, 5, 7)
• Maximum matching ratio (3)
• F-measure
• Jaccard index

Maximum Jaccard Index and Simple Counting Statistics

To measure whether cluster i in cluster set 1 is also contained in
cluster set 2, we quantify cluster-wise similarity using the maximum
Jaccard index (J), which is the number of nodes in common be-
tween two clusters divided by the total number of unique nodes in
the two clusters (Fig. 1B). The cluster-wise Jaccard index Ji is
calculated as

Ji = maxj(overlap(cluster 1i , cluster 2j)union(cluster 1i , cluster 2j) ),

where cluster1 is the noised cluster set, cluster2 is the original
cluster set, and cluster1i and cluster2j are single clusters from
those sets. That is, the similarity score Ji of a cluster from a noised
cluster set is equal to the maximum Jaccard index between that
cluster and any cluster in the original set. Set-wise similarity J is
quantified by averaging Ji over all clusters in the noised cluster set.
That is,

J = avg(Ji)
In addition to metric J, we also employed simple counting sta-

tistics to measure the difference between cluster sets. These include
the number of gained nodes (nodes present in a noised cluster that
are not present in the best-match original cluster), the number of lost
nodes (nodes not present in a noised cluster which are present in the
best-match original cluster), and the number of rearranged cluster
edges. The latter is defined as the absolute number edges different
between a noised and original cluster set, i.e., the number of edges
one would need to add to or remove from the original cluster set to
make it identical to the noise-added set.

Clustering Algorithms

We analyzed the results of nine clustering algorithms: MCL (28), CO
(java implementation at www.paccanarolab.com) (3), k-medoids (“k-
medoids”, R function pam), walktrap clustering (“walktrap”, R function
walktrap.community) (29), hierarchical clustering (“hierarchical”, R
function hclust), MCODE (“mcode”, R function mcode) (34), Louvain
clustering (“louvain”, R function cluster_resolution) (30), and Leiden
clustering (“leiden”, R function leiden) (31). We also include a two-
stage clustering algorithm of CO followed by MCL (“CO+MCL”) for
certain analyses. We chose these algorithms to provide a broad range
of algorithms, including those popular for clustering interactomes (CO,
MCL, CO+MCL, MCODE) and biological networks (Louvain, Leiden) as
well as more general clustering algorithms (hierarchical clustering, k-
Mol Cell Proteomics (2021) 20(C) 100002 3
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FIG. 1. Testing the effect of network noise on clustering. A, primary findings of this study. B, overview of methodological design. Networks
with varying amounts of noise are clustered and results are compared to clusters derived from the original networks. C, cluster-wise com-
parisons are made using the Jaccard index.

Testing the Robustness of Graph-Based Clustering
medoids, Walktrap). CO+MCL has been used specifically to avoid
large clusters sometimes predicted by CO (24, 32). The k-medoids
algorithm is similar to k-means, although we used the less-common k-
medoids because its R implementation (pam) allows analysis to start
from an adjacency matrix, whereas common R implementations of k-
means do not. This is important because our method adds noise to
adjacency matrices (Fig. 1A).

Parameters for all clustering algorithms were chosen by grid search
optimization. Parameter optimization was performed with the original
networks. Because CORUM and email-Eu had ground truth cluster
assignments, we chose the parameter sets that maximized set-wise J
between clusters derived from the original network and the ground
truth clusters. For other networks, we chose the parameter set that
maximized the silhouette score of the cluster assignments, which
selects well-separated clusters whose members are tightly connected
by pairwise edges. Parameter ranges and optimized values are given
in Table 1. Parameters are:
4 Mol Cell Proteomics (2021) 20(C) 100002
• P (CO, CO+MCL): Penalty term modeling the number of un-
known edges in a network.

• Dens (CO, CO+MCL): Minimum cluster density (fraction of filled
edges between cluster members).

• I (CO+MCL, MCL): Expansion parameter.
• Nclusters (k-Medoids, hierarchical): Explicitly controls number of

clusters.
• Steps (walktrap): Number of random walks.
• Resolution (louvain, leiden): Controls the size of clusters.
• Fluff (mcode): Boolean, expand cluster cores by one shell outward?
• Haircut (mcode): Boolean, remove singly connected nodes from

clusters?
• vwp (mcode): Vertex weight percentage, controls the size of

clusters.
• fdt (mcode): Cluster density cutoff.

For full parameter explanations see (3) (CO) (33), (k-Medoids) (31),
(Leiden) (30), (Louvain) (34), (MCODE) (28), (MCL), and (29) (walktrap).



TABLE 1
Parameter choices and ranges for clustering algorithms

Clustering
algorithm

Optimal parameter
choices (CORUM)

Parameter ranges
Nonoptimal parameter

choices

CO P = 500 P: [1, 50, 100, 500, 5000] P = 2
Dens = 0.1 Dens: [0, 0.1, 0.2, 0.3, 0.4] Dens = 0.3

CO + MCL P = 500 P: [1, 50, 100, 500, 5000] P = 2
Dens = 0.1 Dens: [0, 0.1, 0.2, 0.3, 0.4] Dens = 0.3
I = 4 I: [1, 2, 4, 8, 15, 20, 50] I = 2

MCL I = 2 I: [1, 2, 4, 8, 15, 20, 50] I = 4
k-Med Nclusters = 1500 Nclusters: [50, 100, 250, 500, 1000, 1500, 2000, 5000] Nclusters = 1000
walktrap Steps = 2 Steps: [2, 4, 6, 8, 10, 12] Steps = 10
Hierarchical Nclusters = 1500 Nclusters: [250, 500, 1000, 1500, 2000, 5000] Nclusters = 1000
MCODE Fluff = False Fluff: [True, False] Fluff = False

Haircut = True Haircut: [True, False] Haircut = False
vwp = 0.1 vwp: [0, 0.25, 0.5, 0.75, 1] vwp = 0
fdt = 0.5 fdt: [0, 0.25, 0.5, 0.75, 1] fdt = 1

Louvain Resolution = 15 Resolution: [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8, 10, 15, 20, 100] Resolution = 2
Leiden Resolution = 2 Resolution: [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 8, 10, 15, 20, 100] Resolution = 1

CO, ClusterONE; CORUM, comprehensive resource of mammalian complexes; MCL, Markov clustering.
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clust.perturb: A Tool for Assessing Cluster Reliability

clust.perturb is both an open source R package (https://github.
com/fosterlab/clust-perturb) and web application (https://rstacey.
shinyapps.io/clust-perturb-tool/, R shiny) designed to assess cluster
reproducibility by detecting the tendency for clusters to change after
random perturbations are applied to the clustered network. It is
designed as a general-purpose wrapper to clustering algorithms,
which will return both the original clusters and measures of the
reproducibility with which individual clusters and proteins are detected
by the algorithm. The R package can be used to assess clusters from
any clustering algorithm, whereas the web application uses three
default clustering algorithms (hierarchical clustering, MCL, and k-
Medoids). Networks are perturbed by rewiring edges as described in
this paper, and the networks are input as edge lists. Clust.perturb
takes three input parameters and returns two outputs. The input pa-
rameters are clustering algorithm; number of iterations; and noise
level, quantified as the fraction of network edges that are rewired. The
outputs are repJ, a measure of cluster reliability, which is equal to the
cluster's average Ji over all noise iterations and fnode, a measure of
node reproducibility within a cluster, which is equal to the frequency
with which that node occurs in best-matched clusters divided by the
number of noise iterations.
RESULTS

In this study, we investigated the degree to which graph-
based clustering of biological and social networks are
contaminated by network-level noise. To do so, we sought to
address four questions (Fig. 1A). First, we established a suit-
able metric to measure changes in clustering solutions after
injection of noise into a network. Second, we used this metric
to demonstrate that clustering amplifies network noise, i.e.,
the ratio of network level noise to set-wise Jaccard index J is
greater than 1, such that injection of a small degree of noise
into a network can result in dramatic changes to its clustering.
Third, we demonstrated that it is possible to predict which
clusters will be most affected by noise. Finally, we developed
a tool (clust.perturb) that estimates the reproducibility of
cluster assignments.

An Intuitive Metric for Measuring Clustering Similarity

Measuring the effects of noise on clustering results re-
quires a metric for quantifying the difference between two
cluster sets. Because quantifying clustering similarity re-
quires choosing how to reward true positives (within-cluster
edges) and penalize false negatives (between-cluster edges),
this task can be surprisingly ambiguous. There exist many
commonly used cluster similarity metrics (35) with biases
that result in unintuitive behavior (2). Therefore, we tested a
number of commonly used metrics with the goal of ensuring
that we are indeed measuring an intuitive notion of “cluster
set similarity”. Confirming previous results (2), we found that
most metrics failed to adhere to intuition (Fig. 2). For
example, geometric accuracy (GA) and normalized mutual
information can both measure disagreement between
completely identical sets (in cases of “moonlighting”, i.e.,
where nodes are assigned to multiple clusters, Fig. 2C) and
measure perfect agreement between nonidentical sets (when
a cluster set contains nodes not contained in the other set,
Fig. 2D). However, the maximum Jaccard index J (Fig. 1B)
behaved intuitively in all situations tested. This metric also
has the benefit of measuring both cluster-wise and set-wise
similarities (J and Ji, respectively). We therefore use J and Ji
throughout this study.

Clustering Amplifies Network-Level Noise

Because graph-based clusters are generated from a
network, one would expect that changes to the network would
also lead to changes in clusters. Indeed, this is the case: as
network-level errors increase in the CORUM network, cluster
sets both lose and gain proteins when compared with sets of
Mol Cell Proteomics (2021) 20(C) 100002 5
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FIG. 2. Maximum Jaccard index (J) is consistent with intuitive notions of “cluster set similarity” in all four cases. In all cases, 1000
nodes are assigned to clusters, except D where the number of nodes in set 2 is varied. A, set 1: 1000 nodes assigned to 100 clusters of equal
size. Set 2: identical to set 1, aside from a variable fraction of nodes randomly assigned to an existing cluster. B, in all comparisons, 50% of
cluster assignments are identical, and the number of clusters is varied. Set 1: 500 nodes assigned to a variable number of clusters of equal size,
with the remaining 500 nodes randomly assigned to an existing cluster. Set 2: identical to set 1 for the first 500 nodes, but different random
assignments for the remaining 500 nodes. C, cluster sets 1 and 2 are identical in all comparisons, and the number of nodes assigned to multiple
clusters is varied to simulate “moonlighting” nodes. Sets 1 and 2: 1000 potentially nonunique nodes are assigned to 100 clusters of equal size.
At fraction = 0, all nodes are unique, whereas at fraction = 1, all nodes are the same node. D, set 1: 1000 nodes assigned to 100 clusters of equal
size. Set 2 is identical to Set 1 before a fraction of Set 2 nodes are removed. At fraction = 0, both sets are identical, whereas at fraction = 1, set 2
is empty. ARI, adjusted rand index; GA, geometric accuracy; MMR, maximum matching ratio; NMI, normalized mutual information.

Testing the Robustness of Graph-Based Clustering
clusters derived from the error-free network (Fig. 3A). This
response to injected network noise was quantified by our
chosen cluster-wise and set-wise metrics (Ji and J, respec-
tively) (Fig. 3B). The injected network errors in this case are
random connections between proteins that do not necessarily
share any biological role and the removal of true positives,
which should be accompanied by a loss of biological
6 Mol Cell Proteomics (2021) 20(C) 100002
plausibility in the clustered proteins. Therefore, as a control
analysis, we confirmed that clusters derived from noised
networks are less enriched for Gene Ontology (GO) terms than
clusters derived from the CORUM network without added
noise (supplemental Fig. S2).
While it is to be expected that large amounts of injected

network noise lead to changes in clustering results, we find
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FIG. 3. Clustering amplifies network noise. A, subset of the cluster sets produced by clustering the CORUM network with 0 to 25% network
noise. Color shows the fraction of proteins overlapping with original clusters, proteins lost after adding noise, and proteins gained. Clusters were
identified with the MCL algorithm. B, quantifying the effects of CORUM network noise using set-wise metric J (line) and cluster-wise metric Ji
(scatter) Line shows average Ji (J). C, quantifying the effects of network noise on all seven networks. Algorithm MCL. CO, ClusterONE; CORUM,
comprehensive resource of mammalian complexes; MCL, Markov clustering.
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that this is the case for even small amounts of injected
network noise. For all clustering algorithms, an alteration of
1% of the binary interactions (edges) in the CORUM network
resulted in the alteration of at least 13% of clusters in a set
(ClusterONE [CO]) and at most 84% of clusters (Louvain).
Measuring the set-wise change, an introduction of 1%
network noise lead to a 4 to 27% change in clustering results
as quantified by J (J = 0.96 to J = 0.73), and a 2% noise
resulted in set-wise clustering differences between 8 and 41%
(Fig. 3B). Additionally, there was a positive relationship be-
tween cluster size and reproducibility, as shown by multiple
linear regression between Ji (dependent variable) and network
noise level, algorithm, and cluster size (beta = 0.2 × 10−4, p =
1.3 × 10−6; model R2 = 0.42). That is, small clusters were
significantly less reproducible. Importantly, the variability of
cluster sets measured here is because of network noise and
not inherent randomness in the clustering algorithms: all of the
algorithms analyzed here are deterministic, meaning the
clustering does not vary if the network is unchanged (see
Fig. 3B, Ji = 1 when noise = 0).
Because CORUM represents a highly curated, “ground

truth” set of human protein complexes, we also tested the
effects of noise injection in noisier human interactomes
inferred from high-throughput studies. Amplification of
network noise by clustering was also seen when clustering
AP-MS and Y2H interaction networks in addition to CORUM,
as well as other biological and nonbiological networks
(Fig. 3C; see supplemental Fig. S3 for full network-versus-al-
gorithm analysis). As was observed for CORUM, small
network changes (rewiring 1–2% of the edges) lead to sub-
stantial changes in clustering results, including total loss of
some clusters. However, in general, the degree of noise
sensitivity was greater for the high-throughput networks: 1%
and 2% network noise lead to average values of J = 0.58 and
J = 0.50 for non-CORUM networks, compared with J = 0.76
and J = 0.68 for CORUM, respectively. (This difference could
be because of CORUM interactome being constructed from
already well-separated complexes, making the network more
robust to clustering.) The maximum cluster rearrangement at
1% network noise was J = 0.17 for BioGRID and hierarchical
clustering. Therefore, we conclude that amplification of
network noise is a general property of graph-based clustering,
as applied to many different types of networks.
Clustering appears to be sensitive to network noise when

measured by J. However, set-wise metrics can be misleading
(Fig. 2), so we also sought to confirm that substantial clus-
tering rearrangements were occurring through visual inspec-
tion and simple summary statistics. Supplemental Figure S4,
A–E shows visually the results of clustering the binarized
CORUM network via Markov clustering (MCL) and the extent
of gained/lost proteins at various noise levels. Consistent with
conclusions based on metric J, after 1% of the binary in-
teractions were rewired, more than a third of clusters under-
went some rearrangement (102/305 clusters), with clusters
8 Mol Cell Proteomics (2021) 20(C) 100002
losing 0.88 proteins and gaining 1.82 proteins on average
(supplemental Fig. S4F). We also counted the number of lost
and gained cluster edges, i.e., the number of edges one would
need to alter in the original cluster set to arrive at a noised
cluster set (supplemental Fig. S4F). This permitted us to
directly compare the number of rewired network edges to the
number of rearranged cluster edges. We saw that at low levels
of network noise (1% network noise level), a single rewired
network edge produced 38.2 rearranged cluster edges on
average, consistent with clustering amplifying network noise.
Network noise commonly involves both the absence of truly

occurring edges (false negatives) and the presence of
spurious edges (false positives). In the rewiring experiments
above, we simulated the addition of both false positives and
false negatives simultaneously. We also asked whether the
consequences of network noise for clustering robustness
varied when false positives and false negatives were added in
varying proportions. We saw that regardless of whether edges
were removed, added, or rewired, clustering consistently
amplified low levels of injected network noise (supplemental
Fig. S5B, red versus blue). However, at higher noise levels,
we found that for most clustering algorithms edge removal
generally had a greater effect than edge addition.
Finally, we considered the possibility that the sensitivity to

network noise that we observed could be specific to the set of
clustering algorithm parameters that yielded the optimal
clustering solution. Although it is unlikely that this result is
unique to a parameter set, given that we employed multiple
algorithms and two optimization schemes (optimal ground
truth similarity and optimal silhouette score), we wanted to test
whether noise sensitivity persisted when clustering the same
network with the same algorithm but specifically selecting a
different, nonoptimal parameter set (Table 1). Clustering
CORUM with nonoptimal parameters, 1% network noise lead
to a minimal rearrangement of J = 0.85 (CO) and a maximal
rearrangement of J = 0.55 (Louvain), compared with values
J = 0.95 and J = 0.73 for cluster sets using optimized pa-
rameters (Fig. 3). Averaged over all algorithms, optimal pa-
rameters produced J = 0.83, and nonoptimal parameters
produced J = 0.72, meaning optimal parameters also yielded
more robust clustering on average. Therefore, sensitivity to
network noise appeared to be a general feature of the clus-
tering algorithms studied here, rather than a consequence of
parameter optimization.

Clustering Results Derived From Experimental Datasets Are
Also Poorly Reproducible

Having established that graph-based clustering tech-
niques amplify noise injected into binary interaction net-
works, we also asked whether these algorithms would also
amplify noise at the level of the experimental data that en-
ables network inference. To address this possibility, we
analyzed the impact of noise injection on network inference
from co-fractionation data generated within our laboratory
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(Methods). In this analysis, we added noise directly to the
underlying proteomic data rather than the network (Fig. 4A),
then subsequently performed network inference on the noisy
proteomic data, to investigate the impact of experimental
noise on clustering. Consistent with previous results from the
binarized CORUM network, injecting relatively insignificant
levels of noise into experimental co-fractionation datasets
resulted in substantially altered clustering results (Fig. 4B).
For example, although co-fractionation profiles with 1%
added noise were highly similar to profiles without added
noise (average Pearson R2 = 0.9996, Fig. 4D), clustering
these two noise levels could produce clustering sets with
large differences (Fig. 4B, e.g., CO + MCL J = 0.68, MCODE
J = 0.57), the magnitude of which were comparable to or
larger than those observed in CORUM. Importantly, injecting
small amounts of noise also had small effects on the pre-
dicted interactome network, as interactomes derived from
co-fractionation profiles with 1% added noise were largely
similar to interactomes derived from profiles with no noise
(Jaccard = 0.96, Fig. 4D) and similarly for 2% added noise
(Jaccard = 0.93). That is, slight alterations to experimental
data could abolish a large proportion of clusters, while hav-
ing a lesser impact on the interactomes from which the
clusters are derived. This is consistent with the results ob-
tained from analysis of CORUM and reflects the amplification
of both network-level noise, as well as noise in the underlying
experimental data, by graph-based clustering.

The Response of Individual Clusters to Network Noise Is
Reproducible

Our results thus far indicate that the clustering algorithms
studied here are globally sensitive to small levels of noise in
the underlying networks. However, not all clusters are equally
affected by this sensitivity to noise. For example, adding 5%
noise to the CORUM network and clustering with k-Medoids
produced a cluster set with moderate similarity to the
original set (J = 0.42 at 5% noise, Fig. 3B, k-Med panel).
However, within that set, some clusters remained unchanged
(Ji = 1, top), whereas others were entirely removed (Ji = 0,
bottom). We investigated the consistency of this pattern,
that is, whether some clusters tended to be more stable
in response to network noise than others. We reasoned
that, if some clusters are consistently reproducible in
response to simulated network noise, then it may be possible
to identify clusters that will be robust to future, real-world al-
terations of the network, e.g., the collection of data in future
experiments.
To quantify cluster stability, we performed multiple itera-

tions of noise injection and clustering using the CORUM
network and then calculated Ji between the original cluster set
and each iteration. That is, for each of the original clusters, we
calculated N values of Ji, where N is the number of noise it-
erations. If some clusters are consistently stable (or unstable)
in response to noise, the Ji values should be consistently high
(or low) across noise iterations. This is indeed what we
observe. Measuring this consistency as a correlation in the
Jaccard index between iterations, Figure 5A shows Ji values
for two iterations of clustering, using the CO algorithm, across
independent noise injections. These iterations are significantly
correlated (R = 0.72, p < 10−15, Pearson correlation; CO). For
all clustering algorithms studied here, the reproducibility of
individual clusters was correlated between random noise it-
erations, with CO having the highest correlation and MCL the
lowest (Fig. 5B). Across algorithms, a cluster's reproducibility
correlates with its density, i.e., fraction of intracluster edges
(Spearman R = 0.35, p < 10−16). Taken together, this suggests
that a cluster's tendency to “break” in response to injection of
network noise is predictable and that more reproducible
clusters are more supported by intracluster edges in the
underlying network.
A Software Tool for Predicting Cluster Reproducibility
(clust.perturb)

Some clusters are consistently robust when the network is
randomly altered in silico. If the simulated network noise is
representative of real-world network alterations, it should be
possible to predict the effect of future alterations to the
network and thereby identify robust clusters. To this end, we
developed clust.perturb, an R-based tool for measuring
cluster reproducibility by randomly perturbing the network.
clust.perturb takes a network as input and returns two scores,
repJ and fnode, which quantify the reproducibility of clusters
and the reproducibility nodes within clusters, respectively
(Fig. 6A). Following the previous analysis, clust.perturb first
clusters the network, then performs N iterations of clustering
with network noise, yielding N values of Ji for each cluster
from the original cluster set. repJ is then calculated as the
average of these Ji values. For example, CO identifies a 13-
protein cluster in the CORUM network loosely correspond-
ing to the G alpha-13-Hax-1-cortactin-Rac complex (Fig. 6B,
left). Over multiple network noise iterations (Fig. 6B), seven
proteins in the original complex tend to remain co-clustered
(Fig. 6C, top yellow), whereas the other six proteins do so
less consistently. On aggregate, this cluster is partially
reproduced, reflected by its reproducibility score of repJ =
0.61 (100 iterations). Other clusters are effectively “lost” when
the network is altered (Fig. 6D, repJ = 0.41), whereas others
still remain largely unchanged (Fig. 6E, repJ = 0.87).
In addition to scoring the reproducibility of each cluster,

clust.perturb also scores the reproducibility with which each
node (e.g., protein) within a cluster is associated with that
cluster, by counting the frequency with which it is re-clustered
across noise iterations. A score is assigned to each node
(fnode) based on the frequency with which it occurs in the
closest matching noised cluster. For example in Figure 6B,
fnode values close to 1 reflect the fact that these proteins are
present in the best-matching cluster in nearly all noise
Mol Cell Proteomics (2021) 20(C) 100002 9
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FIG. 4. Experimental noise also affects clustering results. A, co-fractionation profiles of 26S proteasomal proteins with no added noise
(left), 25% noise (middle), and 50% noise (right). Average R2 values shown are calculated between each co-fractionation profile before and after
adding noise. In the “No noise” case, these are the same profiles, hence perfect correlation. B, effects of adding co-fractionation noise on
clustering results, measured with J (lines) and Ji (points). C, quantifying the degree to which added co-fractionation noise degrades co-
fractionation profiles, as measured by Pearson correlation between noised and original co-fractionation profiles. D, effect of co-fractionation
noise on interactomes, as measured by Jaccard index between noised and original interactome. Each dot is a dataset, and the line shows
the average. CO, ClusterONE; MCL, Markov clustering.
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iterations, whereas lower fnode values identify proteins that
“drop out” of clusters.
clust.perturb requires two parameters in addition to the

network and choice of clustering algorithm: number of noise
iterations (N) and magnitude of network noise (m). We sought
to establish sensible defaults for these parameters. Because
the running time scales linearly with N, clust.perturb will be
time-intensive if the original clustering algorithm is time-
intensive. To find the minimum iterations necessary to
adequately estimate a cluster's reproducibility, we took
N = 100 iterations as a “final” value, and we calculated how
quickly repJ converged to that value over successive itera-
tions. After a single iteration, the average absolute error for a
given repJ was 0.16, and after 25 iterations, it was 0.03 (CO,
10% network noise) (supplemental Fig. S6A). For all algo-
rithms, a single iteration was sufficient to estimate the final
repJ with a median error of 0.15 (supplemental Fig. S6B).
Thus, we find that repJ converges relatively quickly, and a few
iterations are often adequate to accurately approximate
cluster robustness. Next, the noise magnitude m should be
chosen to properly resolve repJ values: if a noise level is too
small, most clusters will be unchanged and the resolving po-
wer will be poor (left, Fig. 6C), whereas the opposite is true if
noise is too great (right). In general, we found a noise level of
10% was sufficient to resolve clusters generated by all algo-
rithms (Fig. 6C center).

Validating clust.perturb Using Biological Evidence

We next sought to validate the reproducibility measures,
repJ and fnode, calculated by clust.perturb. Specifically, do
reproducible clusters and nodes correspond to meaningful
features of the network? To answer this, we used the original
CORUM complexes, which form the ground truth clusters for
the network and GO terms. First, we investigated whether
reproducible clusters more closely correspond to ground truth
CORUM complexes. To do so, we matched each original
cluster to its closest CORUM complex using the maximum
Jaccard value. Indeed, for all clustering algorithms, we found a
significant positive correlation between repJ and association
with a CORUM complex (Fig. 7A). Similarly, cluster nodes with
lower fnode scores tended to be proteins outside of the best-
match ground truth CORUM complex (Fig. 7B). This associ-
ation between reproducibility and ground truth persists even
when clustering “noisier” interactomes such as BioGRID:
following the analysis in Figure 7A, repJ scores for BioGRID
clusters are significantly correlated with the degree to which
the clusters match a CORUM complex, as quantified by
Jaccard (R = 0.21, p < 2−16). That is, there was a strong,
significant association between reproducibility and ground
truth for both repJ and fnode measures.
We next investigated the association between reproducibility

and GO enrichment (hypergeometric test with Benjamini–
Hochberg correction, q < 0.05; GO terms filtered to >5 and
<100 annotations among unique CORUM proteins). For each
cluster from the original CORUM network, we counted the
number of enriched GO terms in each GO ontology. For all al-
gorithms studied except k-Med, possibly because of few
clusters and therefore small sample size, the number of
enriched GO terms was significantly positively associated with
a cluster's repJ score, even when controlling for the size of
cluster (multiple linear regression, nGO dependent variable,
repJ and cluster_size independent; Fig. 7C). Correspondingly,
across all algorithms, 92% of complexes with repJ > 0.8 were
enriched for at least one GO term, compared with 47% of
complexes with repJ < 0.5. We next investigated whether a
protein's fnode score was associated with GO enrichment by
analyzing whether proteins assigned to a cluster shared one of
that cluster's enriched GO terms. Indeed, for all ontologies and
Mol Cell Proteomics (2021) 20(C) 100002 11
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algorithms except hierarchical clustering, we found a strong,
significant pattern for more reproducible nodes to share the
cluster's enriched GO terms (Fig. 7D). Taken together, these
results suggest that reproducible clusters, as measured by
clust.perturb, more closely align to the network's ground truth
and that cluster nodes with poor reproducibility are more likely
to be spuriously assigned to the cluster (Fig. 7E).

clust.perturb Predicts Reproducibility Across Real-World
Network Alterations

If clusters have a consistent response to random, simulated
network noise (Fig. 5), then it should be possible to predict
which clusters will be robust to future, real-world network al-
terations. We tested whether this is indeed the case. We
constructed two independent networks from each of the eight
co-fractionation datasets by randomly separating each data-
sets' replicates into two groups and taking each network as the
union of unique edges from each group. After clustering each
pair of networks, it was possible to calculate predicted repro-
ducibility (repJ) and actual reproducibility between experi-
mental replicates (Ji) for each cluster. Figure 8 shows that
these values were correlated for all clustering algorithms. Thus,
we find that clust.perturb can accurately predict which clusters
will fail to be reproduced in a second experiment (Fig. 8). On
the basis of this observation, we suggest that clust.perturbmay
be particularly useful for planning follow-up studies in situa-
tions where failure to reproduce clusters that were apparent in
an initial experiment would be costly or time-consuming.
DISCUSSION

We find that graph-based clustering amplifies network
noise. Indeed, this phenomenon is repeatedly observed
across nine different graph-based clustering algorithms and
seven different networks. Consequently, in the presence of
very minor random network-to-network variations (i.e., noise),
clustering results tend to be poorly reproducible. Even small
changes to a network, such as rewiring 1% of edges, lead to
cluster results rearranging by more than 25%. This phenom-
enon represents more than network errors simply being
propagated to the level of clusters. Instead, network alter-
ations appear magnified by clustering, such that the number
of altered cluster edges can be many times the number of
altered network edges. Importantly, this variance in cluster
sets is because of network noise and not inherent random-
ness in the clustering algorithms: for all algorithms here except
Leiden clustering, cluster sets do not vary if the network is
unchanged (for Leiden, we set the random number generator
seed to achieve deterministic behavior).
showing a subset of the CORUM network (gray) and a 13-protein cluster
match clusters from 3 noise iterations are also shown (10% noise). C, av
values for each protein in cluster 1 are shown. Venn diagram shows ove
iterations (gray). D cluster with low reproducibility. E cluster with high repr
resource of mammalian complexes.
Studies that attempt to experimentally validate these clus-
ters or otherwise include them in downstream analyses are
vulnerable to this property and may ultimately analyze
spurious arrangements particular to one dataset, rather than
clusters with general, real-world meaning. This point is
important because networks, especially biological networks
such as protein–protein interactomes, often contain errors in
the range studied here (e.g., 10–50% false positives). If clus-
tering accentuates these errors, then graph-based network
clustering as a tool may be less useful to researchers than
expected, at least in some contexts. This said, more work
remains to be done to explain the different performance of
these diverse clustering algorithms. For example, we did not
fully explore how reproducibility is affected by algorithm-
specific parameter choices. It is possible that some algo-
rithms have parameter ranges that produce more stable
clusters than shown here; although in general, we found that
parameters that maximized performance also maximized
reproducibility.
One explanation for this noise sensitivity is that graph-

based clustering is an inherently ill-posed problem (36, 37).
That is, there are many sets of clusters that could be
described by a given network. For example, a fully connected
network of three nodes and three edges could be a result of a
three-member cluster, three two-member clusters, or any
combination of them. Larger networks have even greater
numbers of potential clusterings, especially in situations
where subsets of clusters exist, such as the 40S and 60S
subunits of the full 80S ribosome. This means that the solution
space of clustering contains many solutions that are approx-
imately equally correct, and without more constraints, it may
be easy for noise to result in the selection of one over the
others.
Our analysis also recapitulates previous observations that

measuring the similarity of two sets of clusters can be
ambiguous (2). Previous studies have looked at the robust-
ness of clustering results to noise, particularly interactome
clustering (4–7). Notably, Broheé et al. (5) reported that clus-
tering results appeared robust to both the addition and
removal of interactions from the interactome. However,
because of the ambiguity and difficulty with measuring the
similarity between clustering sets, it is possible that these
studies were, in fact, measuring something other than the
“similarity” that we propose would correspond to a biologist's
intuition about how clusters should behave. Indeed, Broheé
et al. (5) use GA to measure similarity, a metric that we show
can produce a score of 1 (i.e., perfect agreement) between
nonidentical cluster sets when set 2 contains proteins not
found in set 1 (Fig. 2), a situation which is common.
identified in the network (cluster 1, blue). Adjacency matrices for best-
erage adjacency matrix for cluster 1 across 100 noise iterations. fnode
rlap between cluster 1 (red) and best-match clusters from three noise
oducibility. ClusterONE, 10% network noise. CORUM, comprehensive
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FIG. 7. Reproducible clusters and nodes measured by clust.perturb are associated with ground truth communities. A, clusters with
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To address some of the limitations of graph-based clus-
tering discussed here, we developed clust.perturb (https://
github.com/fosterlab/clust-perturb, https://rstacey.shinyapps.
14 Mol Cell Proteomics (2021) 20(C) 100002
io/clust-perturb-tool/), a tool that provides metrics for cluster
reproducibility (repJ) and the reproducibility of nodes within
clusters (fnode). Because clusters fragment predictably in

https://github.com/fosterlab/clust-perturb
https://github.com/fosterlab/clust-perturb
https://rstacey.shinyapps.io/clust-perturb-tool/
https://rstacey.shinyapps.io/clust-perturb-tool/
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response to random noise (Fig. 5), it is possible to represent
real, future alterations to the network (for instance, changes to
a network across replicates of an experiment), with in silico
network perturbations (i.e., random rewiring of edges within
the network). We found that cluster robustness in response to
in silico network noise was predictive of clusters that were
stable across networks derived from independent experiments
(Fig. 8), and conversely, clust.perturb identified clusters that
were spurious network associations that were not reproduced
in subsequent experiments. Therefore, clust.perturb can pro-
vide additional computational evidence that identifies robust
clusters, which are more likely to carry true, real-world
meaning (Fig. 7).
Using simulated noise to predict the effects of future

network alterations relies on noise being representative of
those real-world alterations. In this study, we simulate network
noise by the addition or removal of edges between existing
nodes, i.e., the same nodes with altered edges. However,
some real-world network alterations differ from this, e.g., in the
case of subsequent CORUM releases, where much of the
network differences result from the addition or removal of
nodes (proteins). Future work remains to see how this type
of noise (node addition and removal) affects cluster
reproducibility.
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